Copied to
clipboard

G = C62.238C23order 288 = 25·32

83rd non-split extension by C62 of C23 acting via C23/C22=C2

metabelian, supersoluble, monomial

Aliases: C62.238C23, C6.115(S3×D4), (C2×C12).213D6, C35(D6.D4), C6.Dic66C2, C6.102(C4○D12), C6.11D1224C2, (C6×C12).256C22, C6.50(Q83S3), C2.5(C12.26D6), C2.14(C12.59D6), C3220(C22.D4), (C3×C4⋊C4)⋊5S3, C4⋊C42(C3⋊S3), C2.12(D4×C3⋊S3), (C2×C3⋊S3).64D4, (C32×C4⋊C4)⋊14C2, (C3×C6).237(C2×D4), (C2×C12⋊S3).5C2, (C3×C6).117(C4○D4), (C2×C6).255(C22×S3), C22.49(C22×C3⋊S3), (C22×C3⋊S3).86C22, (C2×C3⋊Dic3).85C22, (C2×C4×C3⋊S3)⋊22C2, (C2×C4).11(C2×C3⋊S3), SmallGroup(288,751)

Series: Derived Chief Lower central Upper central

C1C62 — C62.238C23
C1C3C32C3×C6C62C22×C3⋊S3C2×C4×C3⋊S3 — C62.238C23
C32C62 — C62.238C23
C1C22C4⋊C4

Generators and relations for C62.238C23
 G = < a,b,c,d,e | a6=b6=c2=1, d2=a3, e2=b3, ab=ba, cac=a-1, ad=da, ae=ea, cbc=b-1, bd=db, be=eb, cd=dc, ece-1=a3c, ede-1=b3d >

Subgroups: 1036 in 234 conjugacy classes, 67 normal (29 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C2×C4, C2×C4, D4, C23, C32, Dic3, C12, D6, C2×C6, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C2×D4, C3⋊S3, C3×C6, C4×S3, D12, C2×Dic3, C2×C12, C22×S3, C22.D4, C3⋊Dic3, C3×C12, C2×C3⋊S3, C2×C3⋊S3, C62, Dic3⋊C4, D6⋊C4, C3×C4⋊C4, S3×C2×C4, C2×D12, C4×C3⋊S3, C12⋊S3, C2×C3⋊Dic3, C6×C12, C22×C3⋊S3, D6.D4, C6.Dic6, C6.11D12, C32×C4⋊C4, C2×C4×C3⋊S3, C2×C12⋊S3, C62.238C23
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C4○D4, C3⋊S3, C22×S3, C22.D4, C2×C3⋊S3, C4○D12, S3×D4, Q83S3, C22×C3⋊S3, D6.D4, C12.59D6, D4×C3⋊S3, C12.26D6, C62.238C23

Smallest permutation representation of C62.238C23
On 144 points
Generators in S144
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)(49 50 51 52 53 54)(55 56 57 58 59 60)(61 62 63 64 65 66)(67 68 69 70 71 72)(73 74 75 76 77 78)(79 80 81 82 83 84)(85 86 87 88 89 90)(91 92 93 94 95 96)(97 98 99 100 101 102)(103 104 105 106 107 108)(109 110 111 112 113 114)(115 116 117 118 119 120)(121 122 123 124 125 126)(127 128 129 130 131 132)(133 134 135 136 137 138)(139 140 141 142 143 144)
(1 35 38 57 13 52)(2 36 39 58 14 53)(3 31 40 59 15 54)(4 32 41 60 16 49)(5 33 42 55 17 50)(6 34 37 56 18 51)(7 134 20 142 120 27)(8 135 21 143 115 28)(9 136 22 144 116 29)(10 137 23 139 117 30)(11 138 24 140 118 25)(12 133 19 141 119 26)(43 78 91 63 86 71)(44 73 92 64 87 72)(45 74 93 65 88 67)(46 75 94 66 89 68)(47 76 95 61 90 69)(48 77 96 62 85 70)(79 114 127 99 122 107)(80 109 128 100 123 108)(81 110 129 101 124 103)(82 111 130 102 125 104)(83 112 131 97 126 105)(84 113 132 98 121 106)
(1 139)(2 144)(3 143)(4 142)(5 141)(6 140)(7 60)(8 59)(9 58)(10 57)(11 56)(12 55)(13 30)(14 29)(15 28)(16 27)(17 26)(18 25)(19 33)(20 32)(21 31)(22 36)(23 35)(24 34)(37 138)(38 137)(39 136)(40 135)(41 134)(42 133)(43 123)(44 122)(45 121)(46 126)(47 125)(48 124)(49 120)(50 119)(51 118)(52 117)(53 116)(54 115)(61 111)(62 110)(63 109)(64 114)(65 113)(66 112)(67 106)(68 105)(69 104)(70 103)(71 108)(72 107)(73 99)(74 98)(75 97)(76 102)(77 101)(78 100)(79 87)(80 86)(81 85)(82 90)(83 89)(84 88)(91 128)(92 127)(93 132)(94 131)(95 130)(96 129)
(1 106 4 103)(2 107 5 104)(3 108 6 105)(7 96 10 93)(8 91 11 94)(9 92 12 95)(13 98 16 101)(14 99 17 102)(15 100 18 97)(19 90 22 87)(20 85 23 88)(21 86 24 89)(25 75 28 78)(26 76 29 73)(27 77 30 74)(31 80 34 83)(32 81 35 84)(33 82 36 79)(37 112 40 109)(38 113 41 110)(39 114 42 111)(43 118 46 115)(44 119 47 116)(45 120 48 117)(49 124 52 121)(50 125 53 122)(51 126 54 123)(55 130 58 127)(56 131 59 128)(57 132 60 129)(61 136 64 133)(62 137 65 134)(63 138 66 135)(67 142 70 139)(68 143 71 140)(69 144 72 141)
(1 93 57 67)(2 94 58 68)(3 95 59 69)(4 96 60 70)(5 91 55 71)(6 92 56 72)(7 106 142 132)(8 107 143 127)(9 108 144 128)(10 103 139 129)(11 104 140 130)(12 105 141 131)(13 45 35 65)(14 46 36 66)(15 47 31 61)(16 48 32 62)(17 43 33 63)(18 44 34 64)(19 112 26 126)(20 113 27 121)(21 114 28 122)(22 109 29 123)(23 110 30 124)(24 111 25 125)(37 87 51 73)(38 88 52 74)(39 89 53 75)(40 90 54 76)(41 85 49 77)(42 86 50 78)(79 115 99 135)(80 116 100 136)(81 117 101 137)(82 118 102 138)(83 119 97 133)(84 120 98 134)

G:=sub<Sym(144)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,139)(2,144)(3,143)(4,142)(5,141)(6,140)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,33)(20,32)(21,31)(22,36)(23,35)(24,34)(37,138)(38,137)(39,136)(40,135)(41,134)(42,133)(43,123)(44,122)(45,121)(46,126)(47,125)(48,124)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(61,111)(62,110)(63,109)(64,114)(65,113)(66,112)(67,106)(68,105)(69,104)(70,103)(71,108)(72,107)(73,99)(74,98)(75,97)(76,102)(77,101)(78,100)(79,87)(80,86)(81,85)(82,90)(83,89)(84,88)(91,128)(92,127)(93,132)(94,131)(95,130)(96,129), (1,106,4,103)(2,107,5,104)(3,108,6,105)(7,96,10,93)(8,91,11,94)(9,92,12,95)(13,98,16,101)(14,99,17,102)(15,100,18,97)(19,90,22,87)(20,85,23,88)(21,86,24,89)(25,75,28,78)(26,76,29,73)(27,77,30,74)(31,80,34,83)(32,81,35,84)(33,82,36,79)(37,112,40,109)(38,113,41,110)(39,114,42,111)(43,118,46,115)(44,119,47,116)(45,120,48,117)(49,124,52,121)(50,125,53,122)(51,126,54,123)(55,130,58,127)(56,131,59,128)(57,132,60,129)(61,136,64,133)(62,137,65,134)(63,138,66,135)(67,142,70,139)(68,143,71,140)(69,144,72,141), (1,93,57,67)(2,94,58,68)(3,95,59,69)(4,96,60,70)(5,91,55,71)(6,92,56,72)(7,106,142,132)(8,107,143,127)(9,108,144,128)(10,103,139,129)(11,104,140,130)(12,105,141,131)(13,45,35,65)(14,46,36,66)(15,47,31,61)(16,48,32,62)(17,43,33,63)(18,44,34,64)(19,112,26,126)(20,113,27,121)(21,114,28,122)(22,109,29,123)(23,110,30,124)(24,111,25,125)(37,87,51,73)(38,88,52,74)(39,89,53,75)(40,90,54,76)(41,85,49,77)(42,86,50,78)(79,115,99,135)(80,116,100,136)(81,117,101,137)(82,118,102,138)(83,119,97,133)(84,120,98,134)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48)(49,50,51,52,53,54)(55,56,57,58,59,60)(61,62,63,64,65,66)(67,68,69,70,71,72)(73,74,75,76,77,78)(79,80,81,82,83,84)(85,86,87,88,89,90)(91,92,93,94,95,96)(97,98,99,100,101,102)(103,104,105,106,107,108)(109,110,111,112,113,114)(115,116,117,118,119,120)(121,122,123,124,125,126)(127,128,129,130,131,132)(133,134,135,136,137,138)(139,140,141,142,143,144), (1,35,38,57,13,52)(2,36,39,58,14,53)(3,31,40,59,15,54)(4,32,41,60,16,49)(5,33,42,55,17,50)(6,34,37,56,18,51)(7,134,20,142,120,27)(8,135,21,143,115,28)(9,136,22,144,116,29)(10,137,23,139,117,30)(11,138,24,140,118,25)(12,133,19,141,119,26)(43,78,91,63,86,71)(44,73,92,64,87,72)(45,74,93,65,88,67)(46,75,94,66,89,68)(47,76,95,61,90,69)(48,77,96,62,85,70)(79,114,127,99,122,107)(80,109,128,100,123,108)(81,110,129,101,124,103)(82,111,130,102,125,104)(83,112,131,97,126,105)(84,113,132,98,121,106), (1,139)(2,144)(3,143)(4,142)(5,141)(6,140)(7,60)(8,59)(9,58)(10,57)(11,56)(12,55)(13,30)(14,29)(15,28)(16,27)(17,26)(18,25)(19,33)(20,32)(21,31)(22,36)(23,35)(24,34)(37,138)(38,137)(39,136)(40,135)(41,134)(42,133)(43,123)(44,122)(45,121)(46,126)(47,125)(48,124)(49,120)(50,119)(51,118)(52,117)(53,116)(54,115)(61,111)(62,110)(63,109)(64,114)(65,113)(66,112)(67,106)(68,105)(69,104)(70,103)(71,108)(72,107)(73,99)(74,98)(75,97)(76,102)(77,101)(78,100)(79,87)(80,86)(81,85)(82,90)(83,89)(84,88)(91,128)(92,127)(93,132)(94,131)(95,130)(96,129), (1,106,4,103)(2,107,5,104)(3,108,6,105)(7,96,10,93)(8,91,11,94)(9,92,12,95)(13,98,16,101)(14,99,17,102)(15,100,18,97)(19,90,22,87)(20,85,23,88)(21,86,24,89)(25,75,28,78)(26,76,29,73)(27,77,30,74)(31,80,34,83)(32,81,35,84)(33,82,36,79)(37,112,40,109)(38,113,41,110)(39,114,42,111)(43,118,46,115)(44,119,47,116)(45,120,48,117)(49,124,52,121)(50,125,53,122)(51,126,54,123)(55,130,58,127)(56,131,59,128)(57,132,60,129)(61,136,64,133)(62,137,65,134)(63,138,66,135)(67,142,70,139)(68,143,71,140)(69,144,72,141), (1,93,57,67)(2,94,58,68)(3,95,59,69)(4,96,60,70)(5,91,55,71)(6,92,56,72)(7,106,142,132)(8,107,143,127)(9,108,144,128)(10,103,139,129)(11,104,140,130)(12,105,141,131)(13,45,35,65)(14,46,36,66)(15,47,31,61)(16,48,32,62)(17,43,33,63)(18,44,34,64)(19,112,26,126)(20,113,27,121)(21,114,28,122)(22,109,29,123)(23,110,30,124)(24,111,25,125)(37,87,51,73)(38,88,52,74)(39,89,53,75)(40,90,54,76)(41,85,49,77)(42,86,50,78)(79,115,99,135)(80,116,100,136)(81,117,101,137)(82,118,102,138)(83,119,97,133)(84,120,98,134) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48),(49,50,51,52,53,54),(55,56,57,58,59,60),(61,62,63,64,65,66),(67,68,69,70,71,72),(73,74,75,76,77,78),(79,80,81,82,83,84),(85,86,87,88,89,90),(91,92,93,94,95,96),(97,98,99,100,101,102),(103,104,105,106,107,108),(109,110,111,112,113,114),(115,116,117,118,119,120),(121,122,123,124,125,126),(127,128,129,130,131,132),(133,134,135,136,137,138),(139,140,141,142,143,144)], [(1,35,38,57,13,52),(2,36,39,58,14,53),(3,31,40,59,15,54),(4,32,41,60,16,49),(5,33,42,55,17,50),(6,34,37,56,18,51),(7,134,20,142,120,27),(8,135,21,143,115,28),(9,136,22,144,116,29),(10,137,23,139,117,30),(11,138,24,140,118,25),(12,133,19,141,119,26),(43,78,91,63,86,71),(44,73,92,64,87,72),(45,74,93,65,88,67),(46,75,94,66,89,68),(47,76,95,61,90,69),(48,77,96,62,85,70),(79,114,127,99,122,107),(80,109,128,100,123,108),(81,110,129,101,124,103),(82,111,130,102,125,104),(83,112,131,97,126,105),(84,113,132,98,121,106)], [(1,139),(2,144),(3,143),(4,142),(5,141),(6,140),(7,60),(8,59),(9,58),(10,57),(11,56),(12,55),(13,30),(14,29),(15,28),(16,27),(17,26),(18,25),(19,33),(20,32),(21,31),(22,36),(23,35),(24,34),(37,138),(38,137),(39,136),(40,135),(41,134),(42,133),(43,123),(44,122),(45,121),(46,126),(47,125),(48,124),(49,120),(50,119),(51,118),(52,117),(53,116),(54,115),(61,111),(62,110),(63,109),(64,114),(65,113),(66,112),(67,106),(68,105),(69,104),(70,103),(71,108),(72,107),(73,99),(74,98),(75,97),(76,102),(77,101),(78,100),(79,87),(80,86),(81,85),(82,90),(83,89),(84,88),(91,128),(92,127),(93,132),(94,131),(95,130),(96,129)], [(1,106,4,103),(2,107,5,104),(3,108,6,105),(7,96,10,93),(8,91,11,94),(9,92,12,95),(13,98,16,101),(14,99,17,102),(15,100,18,97),(19,90,22,87),(20,85,23,88),(21,86,24,89),(25,75,28,78),(26,76,29,73),(27,77,30,74),(31,80,34,83),(32,81,35,84),(33,82,36,79),(37,112,40,109),(38,113,41,110),(39,114,42,111),(43,118,46,115),(44,119,47,116),(45,120,48,117),(49,124,52,121),(50,125,53,122),(51,126,54,123),(55,130,58,127),(56,131,59,128),(57,132,60,129),(61,136,64,133),(62,137,65,134),(63,138,66,135),(67,142,70,139),(68,143,71,140),(69,144,72,141)], [(1,93,57,67),(2,94,58,68),(3,95,59,69),(4,96,60,70),(5,91,55,71),(6,92,56,72),(7,106,142,132),(8,107,143,127),(9,108,144,128),(10,103,139,129),(11,104,140,130),(12,105,141,131),(13,45,35,65),(14,46,36,66),(15,47,31,61),(16,48,32,62),(17,43,33,63),(18,44,34,64),(19,112,26,126),(20,113,27,121),(21,114,28,122),(22,109,29,123),(23,110,30,124),(24,111,25,125),(37,87,51,73),(38,88,52,74),(39,89,53,75),(40,90,54,76),(41,85,49,77),(42,86,50,78),(79,115,99,135),(80,116,100,136),(81,117,101,137),(82,118,102,138),(83,119,97,133),(84,120,98,134)]])

54 conjugacy classes

class 1 2A2B2C2D2E2F3A3B3C3D4A4B4C4D4E4F4G6A···6L12A···12X
order1222222333344444446···612···12
size1111181836222222441818362···24···4

54 irreducible representations

dim1111112222244
type+++++++++++
imageC1C2C2C2C2C2S3D4D6C4○D4C4○D12S3×D4Q83S3
kernelC62.238C23C6.Dic6C6.11D12C32×C4⋊C4C2×C4×C3⋊S3C2×C12⋊S3C3×C4⋊C4C2×C3⋊S3C2×C12C3×C6C6C6C6
# reps113111421241644

Matrix representation of C62.238C23 in GL6(𝔽13)

12120000
100000
001000
000100
0000112
000010
,
100000
010000
0012000
0001200
0000012
0000112
,
1200000
110000
0012000
0001200
0000610
000037
,
1200000
0120000
008800
0010500
000080
000008
,
100000
010000
008800
000500
000029
0000411

G:=sub<GL(6,GF(13))| [12,1,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,1,0,0,0,0,12,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,0,1,0,0,0,0,12,12],[12,1,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,6,3,0,0,0,0,10,7],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,8,10,0,0,0,0,8,5,0,0,0,0,0,0,8,0,0,0,0,0,0,8],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,8,0,0,0,0,0,8,5,0,0,0,0,0,0,2,4,0,0,0,0,9,11] >;

C62.238C23 in GAP, Magma, Sage, TeX

C_6^2._{238}C_2^3
% in TeX

G:=Group("C6^2.238C2^3");
// GroupNames label

G:=SmallGroup(288,751);
// by ID

G=gap.SmallGroup(288,751);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-3,-3,64,254,219,100,2693,9414]);
// Polycyclic

G:=Group<a,b,c,d,e|a^6=b^6=c^2=1,d^2=a^3,e^2=b^3,a*b=b*a,c*a*c=a^-1,a*d=d*a,a*e=e*a,c*b*c=b^-1,b*d=d*b,b*e=e*b,c*d=d*c,e*c*e^-1=a^3*c,e*d*e^-1=b^3*d>;
// generators/relations

׿
×
𝔽